On the -Separating Weight of the Kerdock Code

نویسندگان

  • Tor Helleseth
  • Hans Georg Schaathun
چکیده

Separating codes find applications in many fields including automata theory and digital fingerprinting. It is known that the Kerdock code of sufficient order is (2 1)and (2 2)-separating, but the separating weight is only known by a lower bound due to Sagalovich. In this correspondence, we prove that the lower bound on the (2 1)-separating weight is met with equality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Apparent Duality of the Kerdock and Preparata Codes

The Kerdock and extended Preparata codes are something of an enigma in coding theory since they are both Hamming-distance invariant and have weight enumerators that are MacWilliams duals just as if they were dual linear codes. In this paper, we explain, by constructing in a natural way a Preparata-like code PL from the Kerdock code K, why the existence of a distance-invariant code with weight d...

متن کامل

The Z4-linearity of Kerdock, Preparata, Goethals, and related codes

Certain notorious nonlinear binary codes contain more codewords than any known linear code. These include the codes constructed by Nordstrom-Robinson , Kerdock, Preparata, Goethals, and Delsarte-Goethals . It is shown here that all these codes can be very simply constructed as binary images under the Gray map of linear codes over Z4, the integers mod 4 (although this requires a slight modificat...

متن کامل

A linear construction for certain Kerdock and Preparata codes

The Nordstrom-Robinson, Kerdock and (slightly modified) Preparata codes are shown to be linear over 4, the integers mod 4. The Kerdock and Preparata codes are duals over 4, and the Nordstrom-Robinson code is self-dual. All these codes are just extended cyclic codes over 4. This provides a simple definition for these codes, and explains why their Hamming weight distributions are dual to each oth...

متن کامل

4 - Linearity of Kerdock , Preparata , Goethals and Related Codes ∗

Certain notorious nonlinear binary codes contain more codewords than any known linear code. These include the codes constructed by Nordstrom-Robinson , Kerdock, Preparata, Goethals, and Delsarte-Goethals . It is shown here that all these codes can be very simply constructed as binary images under the Gray map of linear codes over 4, the integers mod 4 (although this requires a slight modificati...

متن کامل

List decoding of noisy Reed-Muller-like codes

Coding theory has played a central role in the development of computer science. One critical point of interaction is decoding error-correcting codes. Firstand second-order Reed-Muller (RM(1) and RM(2), respectively) codes are two fundamental error-correcting codes which arise in communication as well as in probabilistically-checkable proofs and learning. In this paper, the first steps are taken...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004